
DOCUMENTATION OF CPAD

KRISHNENDRA SHEKHAWAT
DEPARTMENT OF MATHEMATICS,
UNIVERSITY OF GENEVA, GENEVA

EMAIL: KRISHNENDRA.IITD@GMAIL.COM

1. Processing language and Introduction

Processing is an open source programming language and environment for people
who want to create images, animations, and interactions (see [1-2]).

It was developed by Casey Reas and Benjamin Fry, both formerly of the Aesthetics
and Computation Group at the MIT Media Lab. Software written using Processing is
in the form of so-called sketches. These sketches are written in a specific text editor,
which can have lots of tabs to manage different files.

After trying various other systems, we have written our code for the software CPAD
in Processing. This code is subdivided into several components to make it more
comprehensive and each component is written in a separate file (tab). CPAD has
two external files and 16 tabs in total; one external file for input and another one for
output. The 16 tabs are illustrated in Figure 1. In upcoming sections, we explain the
functioning of each tab.

When we run CPAD, it generates a .jpg file having plus shape floor plan and its
graph as shown in Figure 2.

For the better understanding of this documentation, first refer to the concepts given
in [3].

2. Notations

Notations frequently used in the text are given as follows:
AT : a weighted adjacency matrix
Given spaces: rooms
(L1, H1), (L2, H2), (L3, H3), (L4, H4), (L5, H5): width and height of central, left, up-

per, right and lower FR
S respectively

Li and Hi: width and height of a FR
S after drawing ith room

li and hi: width and height of ith room
MOI: moment of inertia
Ri: i

th room
F P
S : spiral-based plus shape floor plan of order n i.e. having n rooms

FR: rectangular floor plan or block
FR
S : spiral-based FR

1

2KRISHNENDRASHEKHAWATDEPARTMENTOFMATHEMATICS, UNIVERSITYOFGENEVA, GENEVAEMAIL: KRISHNENDRA.IITD@GMAIL.COM

Figure 1. Screen of CPAD

Figure 2. A plus shape floor plan and its graph generated by CPAD

DOCUMENTATION OF CPAD 3

3. Input for CPAD

The input for the code is extracted from an external file input.txt. While writing
the code, input.txt is kept external so that it can be more user-friendly. The file has
the following 6 different inputs:

1. A weighted adjacency matrix
It gives the adjacency relation among all the rooms which need to be placed inside

the plus shape floor plan.

Remark 1. The number of rooms(n) and a list of all the rooms are specified within
the code in a tab input instead of Input.txt file.

2. The area of each room
3. The ratio of width over height for each room
4. Change of a room
For obtaining F P

S , we divide rooms into 5 groups. The formation of groups is done
by using an algorithm but it can sometimes happen that one is not pleased with the
formed groups. Therefore, we kept an option which enables us to move a room from
one group to another.

To move a room from one group to another, three numbers are required. The first
one is the group number from which its member is moved, the second one is another
group number to which a new room is added and the third number is the member
number, i.e., the room number as given in the list of rooms. For example if numbers
2, 4, 14 are mentioned, this means 15th room is moved from 3rd group to 5th group. We
write −1 as the room number if we don’t change the position of any room. Also, at
the present stage of development of CPAD at most two members can be moved.

Remark 2. In Processing an array always starts from zero, therefore in programming
all numbering begins with zero.

5. The position of groups
Five groups are required to form a plus shape floor plan. These groups are formed

on the basis of weighted adjacency matrix. There are only five positions for groups
therefore their positions are given in terms of five numbers. For example, the following
sequence of five numbers 2, 0, 1, 3, 4 indicates that 3rd, 1st, 4th and 5th groups are the
central, left, upper, right and lower groups respectively.

6. Assigning a spiral for each group
A group can be constructed in any of the eight ways, we say it is constructed with

any of the eight spirals therefore any five numbers between 0 and 7 stand for the spirals
in each corresponding group. For example, the sequence 2, 1, 4, 5, 1 indicates that the
central, left, upper, right and lower groups are constructed with spiral3, spiral2,
spiral5, spiral6 and spiral2 respectively. The eight spirals are shown in Figure 3.

4. CPAD Construction

In this section all tabs of the code are explained one by one in the order in which
they occur.

4KRISHNENDRASHEKHAWATDEPARTMENTOFMATHEMATICS, UNIVERSITYOFGENEVA, GENEVAEMAIL: KRISHNENDRA.IITD@GMAIL.COM

5

2
3

4

4

3

2

3
4

4
3

2

1

1

1

2

1

55 5

5

4

4

4

4
3

3

3

3 2

2

2

2 1

1

1

1

5

5

5

 Spiral1 Spiral2 Spiral3 Spiral4

 Spiral5 Spiral6 Spiral7 Spiral8

Figure 3. 8 different spirals

4.1. Getting input. In the tab input, we import the input from the external file
input.txt by calling a function input().

Also using the areas of all the rooms and the ratio between their width and height,
the width and height of each room are computed.

4.2. Initial adjacency pairs. In the tab initialadjacency by calling function initial-
adjacency() all the initial adjacency pairs are obtained. For details, refer to Section
6.

4.3. Groups. Once we have the initial adjacency pairs, by using the tab groups, the
required groups and their members are obtained. For details, refer to Section 7.

4.4. Change of a room. The function of the tab changingroom is to move a room
from one group to another and simultaneously it revises the position of the room in
the corresponding array.

4.5. Arranging the members of each group in ascending order. The tab ar-
rangingsizes considers each group one by one and then arranges its members in the
increasing order according to their areas.

4.6. Obtaining a spiral-based plus-shape floor plan(F P
S). In the tab plusshape,

by calling function plusshape() the required F P
S is constructed and displayed on the

screen. This function has two parts, the first one does the necessary calculations while
the second one deals with the construction of a F P

S .

First part: Interchanging the width and height of rooms and calculating
the area of F P

S

This part has many steps, some of which may call some other functions. The details
of these newly-defined functions are provided later.
1. Set i = 0
2. Consider the (i+ 1)th group

DOCUMENTATION OF CPAD 5

Remark 3. For all the upcoming steps, the 1st, 2nd, 3rd, 4th and 5th groups represent
the central, left, upper, right and lower groups respectively. Let li and hi be the width
and height of ith room.

3. Interchanging width and height of the 1st member of each group
This step is performed to reduce the area of F P

S . It works well in most cases but
sometimes it might work adversely.

For i = 0, 1 or 3, namely, for 1st, 2nd or 4th group if l1 < h1, we swap l1 and h1.
This is to reduce height of F P

S .
For i = 2 or 4, namely, for 3rd or 5th groups, if l1 > h1, we swap l1 and h1. This is

to reduce width of F P
S .

4. Interchanging width and height of the members of (i+ 1)th group
If spiral1, spiral2, spiral5 or spiral6 is used for the (i + 1)th group then we call

function shape1(). If spiral3, spiral4, spiral7 or spiral8 is used for the (i+1)th group
then we call function shape2().

The functions shape1() and shape2() swap the width and height of all the members
of each group, if required to reduce the size of inner extra spaces.
5. Calculating the width and height of the (i+ 1)th group

All the functions defined in this step compute the width and height of corresponding
groups. If spiral1, spiral2, spiral5 or spiral6 is used for the (i+ 1)th group and if

5.1. i = 0, we call function LandH1.1() otherwise for remaining spirals we call
function LandH2.1().

5.2. i = 1, we call function LandH1.2() otherwise for remaining spirals we call
function LandH2.2().

5.3. i = 2, we call function LandH1.3() otherwise for remaining spirals we call
function LandH2.3().

5.4. i = 3, we call function LandH1.4() otherwise for remaining spirals we call
function LandH2.4().

5.5. i = 4, we call function LandH1.5() otherwise for remaining spirals we call
function LandH2.5().
6. If i = 4, we go to the next step otherwise we increase i by one and go to step 2.
7. Computing the area of F P

S

Going through the details of all the functions used in the first part is lengthy and
tedious; therefore to understand the concept of all these functions, we shall elaborate
on the steps of only two functions, namely, shape1() and LandH1.1(). These two
functions are given in Sections 8 and 9.

Second part: Drawing F P
S

1. Let i = 0.
2. Consider the (i+ 1)th group.
3. Calculating the width and height of the inner extra spaces

Let FR
S represents the rectangular block used to generate F P

S . The construction of a
FR
S is explained in [4]. If Rj is drawn to the left or right of FR

S (j− 1) and lj is greater
than the width of FR

S (j − 1), we draw an inner extra space to the right of FR
S (j − 1).

6KRISHNENDRASHEKHAWATDEPARTMENTOFMATHEMATICS, UNIVERSITYOFGENEVA, GENEVAEMAIL: KRISHNENDRA.IITD@GMAIL.COM

To obtain the starting point of (i + 1)th group (e.g. second group), the width of the
inner extra space is subtracted from x.

If spiral1, spiral2, spiral5 or spiral6 is used for the (i+1)th group, we call function
shape1.1().

If spiral3, spiral4, spiral7 or spiral8 is used for the (i + 1)th, we call function
shape2.1().

Here the functions shape1.1() and shape2.1() calculate the width and height of some
of the inner extra spaces of the (i+ 1)th group.
4. Obtaining starting point of each group and drawing the outer extra spaces

In this step first we compute the starting point of the (i+ 1)th group and then we
draw an outer extra space if required.
For i = 0, 1, 2, 3, 4, we call functions extra1.1(p1, p2), extra1.2(p1, p2, p3, p4), extra1.3(p1, p2, p3),
extra1.4(p1, p2) or extra1.5(p1, p2) respectively. Here p1, p2, p3 and p4 are variables
which are passed to the corresponding function and the value of p1, p2, p3 and p4 may
be different for each spiral.
5. Drawing the (i+ 1)th group

Corresponding to the spiral1, spiral2, spiral3, spiral4, spiral5, spiral6, spiral7 and
spiral8, we call functions shape1.2(), shape2.2(), shape3.2(), shape4.2(), shape5.2(),
shape6.2(), shape7.2() and shape8.2() respectively.

Each of these functions draws the corresponding group following the corresponding
spiral at the starting point obtained in step 4.
6. If i = 4 we move to the next step otherwise we go back to the second step.

Again explaining all the functions is an extensive and verbose process so for clarifica-
tion of the functions, shape1.1(), extra1.2(p1, p2, p3, p4) and shape1.2() are discussed.
These functions are given in Sections 10, 11 and 12 respectively.

Remark 4. For the upcoming computations, it is not feasible to draw rooms again
and again, therefore we allocate the rooms for the required computations. Allocating
does not mean drawing, it means drawing virtually. Allocating the rooms instead of
drawing them reduces the complexity of the code and the code consumes less time for
displaying the final output.

4.7. Obtaining the final adjacency pairs. The tab adjacencypairs computes the
adjacency pairs among the components of each group and among members of different
groups.

Function: adjacencypairs()
1. Set i = 0 and j = 0 where i and j are variables.
2. Obtaining adjacency pairs of the first group

To obtain adjacency pairs of two different groups, after allocating each member we
calculate the width and height of corresponding FR

S .
If j = 0,
If spiral1, spiral2, spiral5 or spiral6 is used, the first and second room is drawn

one above the other. By calling function adjacencycal1() we compute the width and
height of FR

S after allocating each member.

DOCUMENTATION OF CPAD 7

If spiral3, spiral4, spiral7 or spiral8 is used, the first and second room is drawn
side by side. By calling function adjacencycal2() we compute the width and height of
FR
S after allocating each member.
If i = 0, to calculate adjacency pairs of the first group we call function adjacency1().

3. Obtaining adjacent pairs of (j + 1)th group
If i = j + 1,
For (j+1)th group, after allocating each member we compute the width and height

of corresponding FR
S by calling any of the required functions adjacencycal1() or adja-

cencycal2().
We compute adjacency pairs of (j + 1)th group by calling function adjacency1().

4. Obtaining adjacency pairs among the first and second group
If i = 0,
4.1 If j = 0, we obtain those members (and their heights) of the first group

which can be adjacent to some members of the second group by calling function
adjacencyHeight(p3, p4).

The values of p3 and p4 are different for each spiral. Since the second group is
drawn to the left of the first group, adjacency among the members of these two groups
is obtained by comparing their heights.

4.2 Obtaining the members (and their heights) of the second group which can be
adjacent to the members of first group and then computing the adjacency pairs among
these two groups

If j = 1, we first check which spiral is used and then call function adjacencyHeight(p3, p4)
(the values of p3 and p4 are different for each spiral).

Afterwards we call function findingadjacencies(p1, p2). This function computes the
adjacency pairs among the members of two different groups. Here it computes the
adjacency pairs among the members of the first and second group. The value of p1
and p2 can be same or different for different spirals.
5. Obtaining adjacent members of the first and third group

In this case we check if i = 1, j = 0 for the first group and j = 2 for the third group.
To obtain steps 5.1 and 5.2, we replace function adjacencyHeight(p3, p4) by function
adjacencyLength(p3, p4) in the steps 4.1 and 4.2.

Since the third group is drawn above the first group, we compare the widths of the
members of these two groups and that is why we replaced adjacencyHeight(p3, p4) by
adjacencyLength(p3, p4).
6. Obtaining adjacent members of the first and fourth group

In this case we check if i = 2, j = 0 for the first group and j = 3 for the fourth
group. Steps 6.1 and 6.2 are same as the steps 4.1 and 4.2.
7. Obtaining adjacent members of the first and fifth group

In this case we check if i = 3, j = 0 for the first group and j = 4 for the fifth group.
Steps 7.1 and 7.2 are same as the steps 5.1 and 5.2.
8. If j < 4, we increase j by one and go to step 2. If j = 4, we increase i by one. If
i < 4, we consider j = 0 and go to step 2 otherwise stop the process.
Explaining all the functions is an extensive and verbose process so for clarification of
the functions adjacencycal1(), adjacency1(), adjacencyHeight(p3, p4) and findingadjacency(p1, p2)
are discussed. All these functions are given in Sections 13, 14, 15 and 18 respectively.

8KRISHNENDRASHEKHAWATDEPARTMENTOFMATHEMATICS, UNIVERSITYOFGENEVA, GENEVAEMAIL: KRISHNENDRA.IITD@GMAIL.COM

4.8. Obtaining covariants associated with the graphs. The next five tabs are ad-
jacencymatrix, distance, cutvertex, eccentricity and MOI. These tabs computes graph
covariants associated with the obtained F P

S . For the definition of graph terminology
used in this section, refer [5].
1. Function adjacencymatrix()

1.1 This function computes the adjacency matrix from obtained adjacency pairs.
1.2 From the adjacency pairs it calculates degree of connectivity of the graph.
1.3 From the adjacency matrix, it obtains the degree of each vertex of graph of F P

S

i.e. GP
S and then the mean, standard deviation, maximum and minimum of all degrees.

2. Function distance()
This function calculates the distance between any two vertices of GP

S and then the
mean, standard deviation, maximum and minimum of all distances.
3. Function cutvertex()

This function computes all the cut vertices and cut pairs of GP
S .

4. Function eccentricity()
This function first provides the eccentricity of each vertex of GP

S and then calculates
the diameter, radius and centre of GP

S . At the end, it computes the mean and standard
deviation of all eccentricities.
5. Function MOI()

We compute moments of GP
S relative to each vertex by the following two ways:

1. by considering the weight of each room equal to its area,
2. by considering the weight of each room as one unit.

The moments of inertia generally provide a more accurate measure of the centre of GP
S

than eccentricity, even when the graph is equipped only with the trivial weighting.
After having the first-order moments and the moments of inertia of GP

S relative to
each vertex, we compute the mean, standard deviation, maximum and minimum of all
moments.

4.9. Obtaining eigenvalues. From the tab eigenvalue, we obtain the eigenvalues of
the adjacency matrix and its characteristic polynomial, by using inbuilt library Jama.
Afterwards the maximum and minimum of all eigenvalues are computed.

4.10. Drawing the graph. Using the tab graph, we draw the GP
S on the same screen

on which F P
S is displayed.

4.11. Print. Using the tab print, all the results are displayed in an external file out-
put.txt. A list of these results is given in next Section. In this tab the following
calculations are made:

1. Using the inbuilt library jgrapht, we obtain the chromatic number of GP
S .

2. By means of the paths for calculating distances, we compute a shortest path
between each pair of vertices of GP

S using the Floyd’s algorithm given in Section 19.
3. We compute whether GP

S is bipartite or not.

4.12. Calling all functions. In the tab CPAD the function setup() calls all the main
functions defined in Sections 4.1 to 4.11.

DOCUMENTATION OF CPAD 9

5. Output of CPAD

When we run CPAD, a F P
S and its graph are displayed on the screen. In addition,

some important covariants, like the area of F P
S , spirals used for the central, left, upper,

right and lower FR
S , the minimum and maximum moments of inertia, the radius and

diameter of GP
S are also displayed. At the same time, a new file output.txt is obtained,

which contains the following results:
1. The width and height of each room
2. All the five groups and their members
3. The number of inner and outer extra spaces
4. The area of F P

S

5. The total area of all the extra spaces
6. The adjacency matrix
7. The number of edges
8. The degrees of all rooms, their mean, standard deviation, dispersion, maximum

and minimum.
9. The eigenvalues of adjacency matrix and the corresponding polynomial. Also,

the minimum and maximum of all eigenvalues.
10. Whether the GP

S is bipartite or not
11. The distance matrix and the mean, standard deviation, dispersion, maximum

and minimum of all distances
12. A shortest path between each pair of rooms
13. All the cut vertices and cut pairs
14. The eccentricities of all rooms, their mean, standard deviation, and dispersion.

The radius, diameter and centre of GP
S

15. The moments and their mean, standard deviation, dispersion, maximum and
minimum.

16. The chromatic number

5.1. Libraries. To run CPAD, the following libraries are required:
7.1 jgrapht
This library is used to calculate the chromatic number.
7.2 Jama
This library is used to compute the eigenvalues.

6. Initial adjacency pair algorithm

This algorithm calculates the initial adjacency pairs from a given AT .
1. Let AT = [aij]n×n, M = max{aij} where i = 1, ..., n; j = 1, ..., n and n be the

number of rooms. Initially M = 10, j = 1.
2. Consider the jth row.
3. If it corresponds to any room which is covered in any of the obtained initial adja-

cency pairs we skip this row otherwise we obtain all the pairs of rooms corresponding
to number M in the AT and consider them as adjacency pairs.

4. If all the rooms are covered in the obtained adjacency pairs, terminate the
algorithm; otherwise go to the next step.

5. Increase j by one.

10KRISHNENDRASHEKHAWATDEPARTMENTOFMATHEMATICS, UNIVERSITYOFGENEVA, GENEVAEMAIL: KRISHNENDRA.IITD@GMAIL.COM

6. If j < n+ 1, go to step 2.
7. If j = n+ 1, reduce i by one, consider j = 1 and go to step 2.

7. Algorithm for the grouping of rooms

This algorithm computes groups from the initial adjacency pairs. Here in particular,
the algorithm is given for obtaining five groups which will be used to obtain a F P

S . If
the number of groups is greater or less than five, the initial adjacency pairs will require
updating. Therefore this algorithm does not only obtain five groups, but also revises
the initial adjacency pairs. Here are the steps of the algorithm:

1. Let the number of groups be i and initially i = 1.
2. Obtaining the 1st member of the ith group
a. Consider each room one by one from the given list of rooms.
b. Select the room which does not exist in any of the groups obtained so far.
c. Now regard this room as the 1st member of the ith group.
Note: To start the process of forming groups, we consider the 1st room as the 1st

member of the 1st group.
3. Forming the ith group
a. Among the adjacency pairs, we find those rooms which are adjacent to the 1st

member of the group.
b. Then we include these rooms as members of the group.
c. If newly included members are adjacent to other rooms from the initial adjacency

pairs, we add those rooms to the group.
d. We repeat Step 3.c until the remaining rooms from the initial adjacency pairs

are adjacent to any other member of the group.
e. When all members along with their adjacent rooms are included in the group we

stop the process.
4. Review all the remaining rooms. If the number of rooms in the given list is equal

to the number of all rooms included in the groups (i.e., if all the rooms are included
in the groups)

a. Then proceed to step 5
b. Otherwise increase i by one and go to step 2 to form another group.
5. To obtain a plus-shape tiling five groups are required, therefore
a. If i = 5, we stop.
b. If i < 5, we go to step 6 to increase the number of groups.
c. If i > 5, we go to step 7 to reduce the number of groups.
6. When the number of groups is less than 5 (i < 5)
a. We search for the group having the maximum number of rooms as members.
b. If there is more than one group we consider the one which comes first.
c. Let this group be named G.
d. We look in the AT for a pair of elements of G with minimum weight. If there is

more than one pair we consider the one which comes first.
e. Let the rooms from this pair be (Ri, Rj).
f. Now we update the initial adjacency pairs by deleting all those pairs which have

any member in common with G.

DOCUMENTATION OF CPAD 11

g. Split G into two parts, so that i gets increased by one. Splitting has the effect of
forming two new groups:

(i). G1 which contains Ri

(ii). G2 which contains Rj .
h. To find the members of G1 and G2, we look at the weight of each member of G

corresponding to Ri and Rj .
i. If the obtained weight of any member corresponding to Ri is greater than the

weight corresponding to Rj then this room forms an adjacency pair with Ri and we
consider it as a member of G1 otherwise it forms an adjacency pair with Rj and we
consider it as a member of G2.

j. Repeat step 6.i until G1 ∪G2 = G.
k. Now G is replaced by G1 and G2. Also, i got increased by one.
l. Go to step 5.
7. When the number of groups is greater than 5 (i > 5)
a. From among the i groups, we choose two having a minimum number of members.
b. Let these groups be named G1 and G2.
c. Combine G1 and G2 to form a new group.
d. We look in the AT for a pair of elements of G1 and G2 with maximum weight. If

there is more than one pair we consider the one which comes first.
e. Consider this pair to be an adjacency pair.
f. Now G1, G2 together form a new group. Also, i got reduced by one.
g. Go to step 5.
Note: The steps 6.h, 7.d, 7.e, 7.f are meant to update the initial adjacency pairs.

They have nothing to do with the formation of groups.

8. Function shape1()

This function swaps the width and height of members of a group when spiral1,
spiral2, spiral5 or spiral6 is used for the corresponding group.

1. When R2 is going to be allocated above R1

1.1 Calculating the area of extra spaces
If ℓ1 > ℓ2, then AO = (ℓ1 − ℓ2)× h2 otherwise AO = (ℓ2 − ℓ1)× h1

If ℓ1 > h2, then AI = (ℓ1 − h2)× ℓ2 otherwise AI = (h2 − ℓ1)× h1.
1.2 Interchanging the width and height (if required)
If AO > AI , then swap ℓ2 and h2, i.e.,
temp = ℓ2, ℓ2 = h2, h2 = temp.
1.3 Calculating L2 and H2

Initially L1 = l1, H1 = h1. Now L2 = max(ℓ2, ℓ1), H2 = H1 + h2.
2. When Ri is going to be allocated to the left or right of Ri−1

We are calculating the heights of FR
S only because either Hi ≥ hi or Hi < hi but Li

is simply Li−1 + li. Also, for further calculations, when Ri is allocated to the left or
right of Ri−1, only Hi will be used.

2.1 Calculating Hi

Hi = Hi−2 + hi−1.
2.2 Calculating the area of extra spaces
If Hi > hi, AO = (Hi − hi)× ℓi otherwise AO = (hi −Hi)× Li−1

12KRISHNENDRASHEKHAWATDEPARTMENTOFMATHEMATICS, UNIVERSITYOFGENEVA, GENEVAEMAIL: KRISHNENDRA.IITD@GMAIL.COM

If Hi > ℓi, AI = (Hi − ℓi)× hi otherwise AI = (ℓi −Hi)× Li−1.
2.3 Interchanging the width and height (if required)
If AO > AI , then swap ℓi and hi.
2.4 Updating Hi

If hi > Hi, then Hi = hi.
3. When Ri is going to be allocated above or below Ri−1

3.1 Calculating Li

Li = Li−2 + ℓi−1.
3.2 Calculating the area of extra spaces
If Li > ℓi, AO = (Li − ℓi)× hi otherwise AO = (ℓi − Li)×Hi−1

If Li > hi, AI = (Li − hi)× ℓi otherwise AI = (hi − Li)×Hi−1

3.3 Interchanging the width and height (if required)
If AO > AI , then swap ℓi and hi.
3.4 Updating Li

If ℓi > Li, then Li = ℓi.
4. Keep repeating steps 2 and 3 until all members of the corresponding group are

allocated.

9. function LandH1.1()

This function calculates the width and height of the first group when spiral1,
spiral2, spiral5 or spiral6 is used for the corresponding group.

1. If the number of rooms in the 1st group is greater than one
1.1 If the number of rooms in this group is an even number then
L1 = Ln−1 and H1 = Hn−1 + hn

In this case if spiral1, spiral2, spiral5 or spiral6 is used, then Rn will be allocated
above or below FR

S (n− 1). Therefore after allocating Rn, the width of the group will
be Ln−1 but for the height, Hn−1 will be augmented by hn.

1.2 If the number of rooms in this group is an odd number then
L1 = Ln−1 + ln and H1 = Hn−1

In this case if spiral1, spiral2, spiral5 or spiral6 is used, then Rn will be allocated
to the left or right of FR

S (n−1). Therefore after allocating Rn, the height of the group
will be Hn−1 but for the width, Ln−1 will be augmented by ln.

2. If the number of rooms in the 1st group is equal to one then L1 and H1 are ℓ1
and h1 respectively.

10. function shape1.1()

This function computes the width or height of the inner extra space corresponding
to each member of every group.

1. Calculating L2 and H2

Initially L1 = l1, H1 = h1. Now L2 = max(ℓ2, ℓ1), H2 = H1 + h2.
2. Calculating the width of inner extra space after allocating R2

Width(inner extra space) = |ℓ2 − ℓ1|
This value will be used while drawing the corresponding extra space.
3. When Ri is going to be allocated to the left or right of Ri−1

3.1 Hi = Hi−2 + hi−1.

DOCUMENTATION OF CPAD 13

3.2 If hi > Hi then height(inner extra space)= hi − Hi otherwise we consider it as
0 (the explanation for considering the height of inner extra space only when hi > Hi

is given in upcoming function).
4. When Ri is going to be allocated above or below Ri−1

4.1 Li = Li−2 + ℓi−1.
4.2 If ℓi > Li, then width(inner extra space)= ℓi −Li otherwise we consider it as 0.
5. Keep repeating steps 3 and 4 until all members of the corresponding group are

covered.

11. function extra1.2(p1, p2, p3, p4)

This function calculates the starting point of the second group and draw an outer
extra space below the first or the second group.

1. Obtaining the starting point of the second group
Let (x, y) is the upper left corner of the first group and initially the starting point

of the second group.
When a member Ri of the second group is drawn to the right of FR

S (i−1), it overlaps
with some members of the first group (e.g. if spiral2 is used for the second group,
its second member is drawn at position (x+ l1, y); clearly this member overlaps with
some members of the first group). Therefore we deduct the widths of all Ri, drawn
to the right of corresponding FR

S (i− 1), from x to obtain the starting point of second
group.

In function extra1.2(p1, p2, p3, p4), p2 represents the first value of i for which Ri is
drawn to the right of FR

S (i− 1) and after Rp2 every fourth member (if exist) is drawn
to the right of FR

S . Using p2, we compute the widths of all Ri drawn to the right of
corresponding FR

S (i− 1) and subtract them from x.
Also R1 of the second group overlaps with some members of the first group. There-

fore corresponding l1 is subtracted from x. For some spirals, R2 is drawn to the left or
to the right of R1 (e.g. spiral2, see Figure 3). In this case, p1 = 0 and l1 is subtracted
from x. For some spirals, R2 is drawn above or below R1 (e.g. spiral1, see Figure 3).
In this case p1 = 1 and L2 is deducted from x.

For the second group, we require (x, y) should be its upper right corner. When a
member Ri of the second group is drawn above FR

S (i − 1), (x, y) would not remain
upper right corner of the second group. To obtain this position, the heights of all those
Ri which are drawn above corresponding FR

S (i− 1), are added to y.
Here p3 represents the first value of i for which Ri is drawn above FR

S (i − 1) and
after Rp3 every fourth member (if exist) is drawn above some FR

S .
If a member Rj of the second group is drawn to the left or right of FR

S (j − 1) and
lj is greater than the width of FR

S (j − 1), we draw an inner extra space to the right of
FR
S (j − 1). This extra space is a virtual part of FR

S (j − 1) and it virtually increases
the width of FR

S (j − 1). To obtain the starting point of the second group, the width
of the inner extra space is subtracted from x. The width of inner extra spaces has
already been obtained in the previous function.

Here p1 also represents the first value of i for which Ri is drawn above or below
FR
S (i − 1) where li is greater than the width of FR

S (i − 1). For this case we have
considered the upper and lower sides only, therefore every second member after Rp1 is

14KRISHNENDRASHEKHAWATDEPARTMENTOFMATHEMATICS, UNIVERSITYOFGENEVA, GENEVAEMAIL: KRISHNENDRA.IITD@GMAIL.COM

drawn either above or below some FR
S . Therefore using p1 the width of all the inner

extras are obtained and subtracted from x.
After all these calculations, obtained value of x and y gives the starting point of the

second group.

Remark 5. We have not considered the members Ri whose height is greater than the
height of FR

S (i− 1) because the inner extra space is always drawn below a FR
S . And to

obtain the starting point, the heights of only those spaces which are drawn above some
FR
S are subtracted from y.
In case of the third group, we have not considered the cases when the width of

members Ri is greater than the width of FR
S (i− 1) because in these cases, inner extra

space is always drawn to the right of FR
S (i − 1). And to get the starting point, the

widths of only those Ri which are drawn to the left of FR
S (i− 1) are added to x.

Similarly for the first, fourth and fifth groups, any of the cases when the width or the
height of Ri is greater than the width (or the height) of FR

S (i−1), have not considered.

2. Drawing an outer extra space
If H1 > H2, we draw an outer extra space below the second group such that its

lower left vertex is the upper left vertex of the extra space. The width and height of
this extra space is L2 and H1 −H2 respectively having position (x− L2, y +H2).

If H1 < H2, we draw an outer extra space below the first group such that its lower
left vertex is the upper left vertex of the extra space. The width and height of this
extra space is L1 and H2 −H1 respectively having position (x, y +H1).

Remark 6. A particular colour is used for all the outer extra spaces to distinguish
them from others spaces. Also after drawing an outer extra space, the number of outer
extra spaces is increased by one so that in the end the total number of outer extra
spaces is achieved.

12. function shape1.2()

This function is used to draw all the members of any group when spiral1 is used
for the group. Suppose ith group is going to be drawn and its starting point is (x, y).

1. Drawing R1

R1 is drawn with the width and height ℓ1 and h1 respectively at position (x, y).
If the number of members of ith group is greater than one, move to the next step

otherwise stop here.

Remark 7. After drawing each member, its name is printed at its centre and a par-
ticular colour is used for all the members of each group to distinguish them from the
extra spaces.

2. Drawing R2 and the inner extra space
R2 is drawn with the width and height ℓ2 and h2 respectively at position (x, y−h2).
If ℓ2 < ℓ1, then an inner extra space is drawn to the right side of R2 with the width

and height obtained in the function shape1.1() at position (x+ ℓ2, y − h2).
If ℓ2 > ℓ1, then an inner extra space is drawn to the right R1, with the width and

height obtained in the function shape1.1() at position (x+ ℓ1, y).

DOCUMENTATION OF CPAD 15

Remark 8. A particular colour is used in all the inner extra spaces to distinguish
them from other spaces. Also after drawing an inner extra space the number of inner
extra spaces is increased by 1 so that in the last the total number of inner extra spaces
will be achieved.

3. Calculating L2 and H2

Initially L1 = l1, H1 = h1. Now L2 = max(ℓ2, ℓ1), H2 = H1 + h2.
4. Obtaining a position for R3

Since upper left vertex of R3 should be upper right vertex of FR
S (2), we subtract h2

from y, i.e. y = y − h2, to obtain position of R3.
5. Drawing Ri to the right of FR

S (i− 1)
Add Li to x to obtain position of Ri. We draw Ri with width ℓi and height hi at

position (x, y).
If hi < Hi, we draw an inner extra space at position (x, y + hi) with width ℓi and

height Hi − hi. If hi > Hi, we draw an inner extra space at position (x − Li, y +Hi)
with width Li and height hi −Hi.

In this case we update Hi by Hi = hi.
6. Drawing Ri below FR

S (i− 1)
Subtract Li from x and add Hi to y to obtain position of Ri. We draw Ri with

width ℓi and height hi at position (x, y).
If ℓi < Li, we draw an inner extra space at position (x + ℓi, y) with width Li − ℓi

and height hi.
If ℓi > Li, we draw an inner extra space at position (x + Li, y − Hi) with width

ℓi − Li and height Hi.
In this case we update Li by Li = ℓi.
7. Drawing Ri to the left side of FR

S (i− 1)
Subtract ℓi from x and subtract Hi from y to obtain position of Ri. We draw Ri

with width ℓi and height hi at position (x, y).
If hi < Hi, we draw an inner extra space at position (x, y + hi) with width ℓi and

height Hi − hi. If hi > Hi, we draw an inner extra space at position (x + ℓi, y +Hi)
with width Li and height hi −Hi.

In this case we update Hi by Hi = hi.
8. Drawing Ri above FR

S (i− 1)
Subtract hi from y to obtain position of Ri. We draw Ri with width ℓi and height

hi at position (x, y).
If ℓi < Li, we draw an inner extra space at position (x + ℓi, y) with width Li − ℓi

and height hi. If ℓi > Li, we draw an inner extra space at position (x + Li, y + hi)
with width ℓi − Li and height Hi.

In this case we update Li by Li = ℓi.
9. Keep repeating the steps 5, 6, 7 and 8 until all the members are drawn.

13. function adjacencycal1()

This function calculates the width (or the height) of FR
S after allocating each room

for each group when spiral1, spiral2, spiral5 or spiral6 is used for the corresponding
group.

1. Initially L1 = l1, H1 = h1. Now L2 = max(ℓ2, ℓ1), H2 = H1 + h2.

16KRISHNENDRASHEKHAWATDEPARTMENTOFMATHEMATICS, UNIVERSITYOFGENEVA, GENEVAEMAIL: KRISHNENDRA.IITD@GMAIL.COM

2. When Ri is going to be allocated to the left or right of Ri−1

Hi = Hi−2 + hi−1. If hi > Hi we have Hi = hi.
3. When Ri is going to be allocated above or below Ri−1 member
Li = Li−2 + ℓi−1. If ℓi > Li we have Li = ℓi.
4. Keep repeating steps 2 and 3 until all the members of corresponding group are

covered.

14. function adjacency1()

This function calculates the adjacency pairs among each group.
1. Obtaining adjacency of the first member with other members of the same group
1.1. If n = 2 then R1 will be adjacent to R2.
1.2. If n = 3 then R1 will be adjacent to R2 and R3.
1.3. If n > 3 then R1 will be adjacent to R2, R3, R4 and R5.
2. Obtaining adjacency with every next member
Starting from R2, each Ri will be adjacent to every Ri+1 till i < n.
3. Obtaining adjacency with every third next member
Starting from R2, each Ri will be adjacent to every Ri+3 till i < (n− 2).
4. Obtaining adjacency with every fourth next member
Starting from R2, each Ri will be adjacent to every Ri+4 till i < (n− 3).

15. function adjacencyHeight(p3, p4)

This function calculates the members (and their heights) of the first and second
group (resp. fourth group) which can be adjacent to each other.

There are four cases for the number of members of a group, namely n = 1, n = 2,
n = 3 or n > 3. For n > 3, there are four sub-cases namely n ≡ 1 (mod 4), n ≡ 2
(mod 4), n ≡ 3 (mod 4) and n ≡ 0 (mod 4). We represent all these cases using p3.

We know that at most three members of the first group can be adjacent to at most
three members of the second or the fourth group. We represent these members by r1,
r2 and r3 and their heights by s1, s2 and s3.

Here p4 = 1 stands for the members (and their heights) of the first group which can
be adjacent to the members of the second group (resp. fourth group) when spiral1,
spiral2, spiral3 or spiral4 (resp. spiral5, spiral6, spiral7 or spiral8) is used for the
first group.

p4 = 2 represents the members (and their heights) of the first group which can
be adjacent to the members of the second group (resp. fourth group) when spiral5,
spiral6, spiral7 or spiral8 (resp. spiral1, spiral2, spiral3 or spiral4) is used for the
first group.

p4 = 3 corresponds to the members (and their heights) of the second group (resp.
fourth group) which can be adjacent to the members of the first group when spiral5,
spiral6, spiral7 or spiral8 (resp. spiral1, spiral2, spiral3 or spiral4) is used for the
second group (resp. fourth group).

p4 = 4 symbolizes the members (and their heights) of the second group (resp. fourth
group) which can be adjacent to the members of the first group when spiral1, spiral2,
spiral3 or spiral4 (resp. spiral5, spiral6, spiral7 or spiral8) is used for the second
group (resp. fourth group).

DOCUMENTATION OF CPAD 17

Let e1, e2 and e3 are the members of the first group and g1, g2 and g3 represent their
heights respectively. If three members of a group (which can be adjacent to other
members of any other group) are drawn one above the other such that e3 at top, e2 in
middle and e1 at bottom. Let f1, f2 and f3 represents members of the second or the
fourth group and h1, h2 and h3 represents their height respectively. Similarly if f1, f2
and f3 are drawn one above the other then we have f3 at top, f2 in middle and f1 at
bottom. For example, in Figure 2 for the left FR

S , R5, R8, R3 are f3, f2, f1 respectively.
1. Set p1 = p3 − 1.
2. If p1 = 1 (here n = 1)
In this case, only one member of the first group can be adjacent to one member of

the second or the fourth group.
Here r1 is R1 and s1 = h1. If p4 = 1 or 2, we have e1 = r1, g1 = s1. If p4 = 3 or 4,

we have f1 = r1, h1 = s1.
3. If p1 = 2
3.1 If n = 1, this step is same as Step 2.
3.2 If n = 2 we have r2 is R1 with s2 = h1, r1 is R2 with s2 = h1.
If p4 = 1 we have e1 = r1, e2 = r2, g1 = s1, g2 = s2.
If p4 = 2 we have e1 = r2, e2 = r1, g1 = s2, g2 = s1.
If p4 = 3 we have f1 = r1, f2 = r2, h1 = s1, h2 = s2.
If p4 = 4 we have f1 = r2, f2 = r1, h1 = s2, h2 = s1.
4. If p1 = 3
4.1 If n = 1, this step is same as Step 2.
4.2 If n = 2 we have r1 as the first member, s1 = H1. The cases for p4 = i,

i = 1, . . . , 4 are same as in Step 2.
4.3 If n = 3 we have r2 as the first member, s2 = H1, r1 as the third member,

s2 = h3. The cases for p4 = i, i = 1, . . . , 4 are same as in Step 3.2.
5. If n > p1
5.1 If n ≡ p3 (mod 4) ((n congruent to p3 modulo 4)) then r1 is Rn, s1 = Hn. The

cases for p4 = i, i = 1, . . . , 4 are same as in Step 2.
5.2 If n ≡ p3 + 1 (mod 4) then r2 is Rn, s2 = hn, r1 is Rn−1, s1 = Hn−1. The cases

for p4 = i, i = 1, . . . , 4 are same as in Step 3.2.
5.3 If n ≡ p3 + 2 (mod 4) then r2 is Rn−1, s2 = hn−1, r1 is Rn−2, s1 = Hn−2. The

cases for p4 = i, i = 1, . . . , 4 are same as given in Step 3.2.
5.4 If n ≡ p3 + 3 (mod 4) then r3 is Rn−2, s3 = hn−2, r2 is Rn−3, s2 = Hn−3 and r1

is Rn, s1 = hn.
If p4 = 1 we have e1 = r1, e2 = r2, e3 = r3, g1 = s1, g2 = s2, g3 = s3.
If p4 = 2 we have e1 = r3, e2 = r2, e3 = r1, g1 = s3, g2 = s2, g3 = s1.
If p4 = 3 we have f1 = r1, f2 = r2, f3 = r3, h1 = s1, h2 = s2, h3 = s3.
If p4 = 4 we have f1 = r3, f2 = r2, f3 = r1, h1 = s3, h2 = s2, h3 = s1.
6. If p4 = 1 or p4 = 2 we have e4 = n. If p4 = 3 or p4 = 4 we have f4 = n. The

values of e4 and f4 will be used in the upcoming functions.

Example 1. Refer to Figure 2 where the members of the first group can be adjacent
to the members of the second group, we have p4 = 2 and p3 = 4. From Step 5.2, we
have r1 = R2, r2 = R15, hence e1 = R15, e2 = R2.

Before moving to the function findingadjacencies(p1, p2), consider function

18KRISHNENDRASHEKHAWATDEPARTMENTOFMATHEMATICS, UNIVERSITYOFGENEVA, GENEVAEMAIL: KRISHNENDRA.IITD@GMAIL.COM

adjacency(p1, p2, p3, p4, p5, p6, p7, p8, p9) which is going to be used in the function
findingadjacencies(p1, p2).

At most three members of the first group can be adjacent to at most three members
of another group, therefore there are nine possibilities to be considered for computing
adjacency among the members of different groups. All these nine possibilities are given
in the function adjacency(p1, p2, p3, p4, p5, p6, p7, p8, p9).

16. function adjacency(p1, p2, p3, p4, p5, p6, p7, p8, p9)

If p1 = 1, p2 = 1, p3 = 1, we consider e1 is adjacent to f1, f2, f3 respectively.
If p4 = 1, p5 = 1, p6 = 1, we consider e2 is adjacent to f1, f2, f3 respectively.
If p7 = 1, p8 = 1, p9 = 1, we consider e3 is adjacent to f1, f2, f3 respectively.
As said before 1, 2 or 3 members of the first group can be adjacent to 1, 2 or 3

members of any other group. These possibilities are expressed by following functions:
adjacentrects11(), adjacentrects21(), adjacentrects31(), adjacentrects12(), adjacentrects22(),

adjacentrects32(), adjacentrects13(), adjacentrects23(), adjacentrects33().
For example function adjacentrects31() represents that only one member of the first

group can be adjacent to at most three members of any other group. For these func-
tions, adjacency pairs are obtained by comparing the width or height of the members
of corresponding groups.

Here it is not possible to go through all these nine functions, therefore we consider
only one of them. For an illustration, we discuss the steps of function adjacentrects22().

17. function adjacentrects22()

1. If (h2 + h1) ≤ g2 then f1, f2 is adjacent to e2 and we call function adjacency(0,
0, 0, 1, 1, 0, 0, 0, 0) to obtain adjacency pairs (f1, e2) and (f2, e2).

2. If h2 < g2 and h1 > (g2 − h2) then f2 is adjacent to e2 and f1 is adjacent to e1,
e2. Here we call function adjacency(1, 0, 0, 1, 1, 0, 0, 0, 0) to obtain corresponding
adjacency pairs.

3. If h2 > g2 and h2 < (g2 + g1) then f2 is adjacent to e1, e2 and f1 is adjacent to
e1. Therefore, we call function adjacency(1, 1, 0, 0, 1, 0, 0, 0, 0).

4. If h2 ≥ (g2 + g1) then f2 is adjacent to e1, e2 and we call function adjacency(0,
1, 0, 0, 1, 0, 0, 0, 0).

5. If h2 = g2 then f2 is adjacent to e2 and f1 is adjacent to e1. Here we call function
adjacency(1, 0, 0, 0, 1, 0, 0, 0, 0).

Now we discuss function findingadjacency(p1, p2).
From functions adjacencyLength(p3, p4) or adjacencyHeight(p3, p4), there are four

cases for the values of f4 and e4, namely f4 > i and e4 > j where i = 0, . . . , 3,
j = 0, . . . , 3. For obtaining adjacency pairs, it is required to consider e4 and f4
together. Therefore, in total there are sixteen possibilities.

In function findingadjacency(p1, p2), p1 = 2 and p2 = 1 represents the case f4 > 2,
e4 > 1. These sixteen possibilities are divided into following four parts.

In the first part we consider f4 ≤ p1 and e4 ≤ p2 where the number of sub-cases is
p1 × p2. For example for f4 ≤ 2 and e4 ≤ 1, we consider the sub-cases f4 = 1 and
e4 = 1, f4 = 2 and e4 = 1.

DOCUMENTATION OF CPAD 19

In the second part we consider f4 > p1 and e4 ≤ p2 where the number of sub-cases
is 4 × p2. For example for f4 > 2 and e4 ≤ 1, we consider the sub-cases f4 ≡ 1
(mod 4) and e4 = 1, f4 ≡ 2 (mod 4) and e4 = 1, f4 ≡ 3 (mod 4) and e4 = 1, f4 ≡ 0
(mod 4) and e4 = 1. In general, for this part we call function adjacentrects1(p3, p1).
For example for f4 > 2 and e4 ≤ 1, we have p3 = 1, p1 = 2.

In the third part we consider f4 ≤ p1 and e4 > p2 where the number of sub-cases is
p1 × 4. In general, for this part we call function adjacentrects2(p3, p1). For example
for f4 ≤ 2 and e4 > 1, we have p3 = 2, p1 = 1.

In the fourth part, we consider f4 > p1 and e4 > p2 where the number of sub-cases
is 4× 4 = 16.

It is not possible to go through all the sixteen cases, therefore for demonstration we
discuss only one case.

Suppose the first and second group is drawn using spiral1. This is the case f2 > 2
and e4 > 0 which implies that p1 = 2 and p2 = 0.

18. function findingadjacency(2, 0)

For p1 = 2 and p2 = 0, we first consider the case f4 ≤ 2 and e4 > 0 and then
consider the case f4 > 2 and e4 > 0.

1. f4 ≤ 2 and e4 > 0
If p1 = 2 and p2 = 0 we call function adjacentrects2(2, 0). For this particular

example, the function adjacentrects2(2, 0) has the following steps:
1.1 If f4 = 1 and e4 ≡ 1 (mod 4) we call function adjacentrects11(). As an example,

function adjacentrects22() has already been discussed (see Section 17).
1.2 If f4 = 1 and (e4 ≡ 2 (mod 4) or e4 ≡ 3 (mod 4)) we call function adjacen-

trects21().
1.3 If f4 = 1 and e4 ≡ 0 (mod 4) we call function adjacentrects31().
1.4 If f4 = 2 and e4 ≡ 1 (mod 4) we call function adjacentrects12().
1.5 If f4 = 2 and (e4 ≡ 2 (mod 4) or e4 ≡ 3 (mod 4)) we call function adjacen-

trects22().
1.6 If f4 = 2 and e4 ≡ 0 (mod 4) we call function adjacentrects32().
2. f4 > 2 and e4 > 0
2.1 If (f4 ≡ 0 (mod 4) or f4 ≡ 1 (mod 4)) and e4 ≡ 1 (mod 4) we call function

adjacentrects12().
2.2 If (f4 ≡ 0 (mod 4) or f4 ≡ 1 (mod 4)) and (e4 ≡ 2 (mod 4) or e4 ≡ 3 (mod 4),

we call function adjacentrects22().
2.3 If (f4 ≡ 0 (mod 4) or f4 ≡ 1 (mod 4)) and e4 ≡ 0 (mod 4) we call function

adjacentrects32().
2.4 If f4 ≡ 2 (mod 4) and e4 ≡ 1 (mod 4) we call function adjacentrects13().
2.5 If f4 ≡ 2 (mod 4) and (e4 ≡ 2 (mod 4) or e4 ≡ 3 (mod 4)) we call function

adjacentrects23().
2.6 If f4 ≡ 2 (mod 4) and e4 ≡ 0 (mod 4) we call function adjacentrects33().
2.7 If f4 ≡ 3 (mod 4) and e4 ≡ 1 (mod 4) we call function adjacentrects11().
2.8 If f4 ≡ 3 (mod 4) and (e4 ≡ 2 (mod 4) or e4 ≡ 3 (mod 4)) we call function

adjacentrects21().
2.9 If f4 ≡ 3 (mod 4) and e4 ≡ 0 (mod 4) we call function adjacentrects31().

20KRISHNENDRASHEKHAWATDEPARTMENTOFMATHEMATICS, UNIVERSITYOFGENEVA, GENEVAEMAIL: KRISHNENDRA.IITD@GMAIL.COM

19. Floyd’s Algorithm

This algorithm (cf. Pemmaraju and Skiena [6], Chapter 8) is used to obtain the
distance and a shortest path between any two vertices.

The algorithm works by updating two matrices, Dk and Qk, n times for an n−vertex
graph. The matrix Dk, in any iteration k, gives the value of the shortest distance
among all pairs of vertices (i, j) as obtained till the kth iteration. The matrix Qk has
qkij as its elements. The value of qkij gives the immediate predecessor vertex from vertex

i to vertex j on the shortest path as determined by the kth iteration. The starting
matrix D0, with entries d0ij , is defined as follows:

d0ij = 1 if i 6= j and vertex i is adjacent to vertex j

d0ij = ∞ if i 6= j and vertex i is not adjacent to vertex j

d0ij = 0 if i = j

The entries q0ij of the predecessor matrix Q0 are defined as follows: q0ij = i, for i 6= j,
i.e., for every pair of distinct vertices (i, j), the immediate predecessor of vertex j on a
shortest path leading from vertex i to vertex j is (temporarily) assumed to be vertex
i. After defining D0 and Q0 the following steps are used repeatedly to determine Dn

and Qn.
Step 1 : Set k = 1
Step 2 : The entries dkij of the shortest path matrix Dk are defined by:

dkij = min(dk−1

ij , dik
k−1 + dkj

k−1)

.
Step 3: The entries qkij of the predecessor matrix Qk are defined as follows:

If dkij 6= dk−1

ij then qkij = qkj
k−1 else qkij = qk−1

ij .

Step 4: If k = n, the algorithm is terminated. If k < n, increase k by 1, and return
to step 2.

Now we take a look at the algorithm in a little more detail. In step 2, each time
one goes through the algorithm, it is checked whether a shorter path exists between
vertex i and vertex j. In step 3, if it is established that dkij 6= dk−1

ij , i.e., the length of

the shortest path dkij between vertices i and j is less than the length of the shortest

path dk−1

ij , it is required to change the immediate predecessor vertex to vertex j. Since
the length of the new shortest path is:

dkij = dik
k−1 + dkj

k−1

it is clear that here node k is the new immediate predecessor vertex to k, and therefore:

qkij = qkj
k−1

After passing through the algorithm n times, the entries dnij of the final matrix Dn

will constitute a shortest path going from vertex i to vertex j.
Matrix Q gives the immediate predecessor vertex to vertex j on the shortest path.

To have all vertices of the shortest path between vertex i and j, starting from vertex
j obtain the immediate predecessor one by one till vertex i.

The obtained shortest path is of course not unique in general.

DOCUMENTATION OF CPAD 21

References

[1] www.processing.org
[2] Terzidis, K., Algorithms For Visual Design (Using the Processing Language), Wiley Publishing,

Inc, Indianapolis, 2009.
[3] Shekhawat, K., Automated space allocation using mathematical techniques, Ain Shams Engi-

neering Journal, Elsevier, ASEJ402, 2015.
[4] Shekhawat, K., Algorithm for constructing an optimally connected rectangular floor plan, Fron-

tiers of architectural research, 3, 324-330, 2014.
[5] Gross, J. L. and Yellen, J., Graph Theory and Its Applications (Second Edition), Chapman &

Hall/CRC, Boca Raton, 2006.
[6] Pemmaraju, S. and Skiena, S., Computational Discrete Mathematics (Combinatorics and Graph

Theory with Mathematica), Cambridge University Press, 2003.

